The peptides acetyl-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 and acetyl-(Gly-Pro-3(S)Hyp)10-NH2 do not form a collagen triple helix.
نویسندگان
چکیده
Hydroxylation of proline residues in the Yaa position of the Gly-Xaa-Yaa repeated sequence to 4(R)-hydroxyproline is essential for the formation of the collagen triple helix. A small number of 3(S)-hydroxyproline residues are present in most collagens in the Xaa position. Neither the structural nor a biological role is known for 3(S)-hydroxyproline. To characterize the structural role of 3(S)-hydroxyproline, the peptide Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 was synthesized and analyzed by circular dichroism spectroscopy, analytical ultracentrifugation, and 1H nuclear magnetic resonance spectroscopy. At 4 degrees C in water the circular dichroism spectrum indicates that this peptide was in a polyproline-II-like secondary structure with a positive peak at 225 nm similar to Ac-(Gly-Pro-4(R)Hyp)10-NH2. The positive peak at 225 nm almost linearly decreases with increasing temperature to 95 degrees C without an obvious transition. Although the peptide Ac-(Gly-Pro-4(R)Hyp)10-NH2 forms a trimer at 10 degrees C, sedimentation equilibrium experiments indicate that Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 is a monomer in water at 7 degrees C. To study the role of 3(S)-hydroxyproline in the Yaa position, we synthesized Ac-(Gly-Pro-3(S)Hyp)10-NH2. This peptide also does not form a triple helix in water. 1H Nuclear magnetic resonance spectroscopy data (including line widths and nuclear Overhauser effects) are entirely consistent, with neither Ac-(Gly-3(S)Hyp-4(R)Hyp)10-NH2 nor Ac-(Gly-Pro-3(S)Hyp)10-NH2 forming a triple helix in water. Therefore 3(S)-hydroxyproline destabilizes the collagen triple helix in either position. In contrast, when 3(S)-hydroxyproline is inserted as a guest in the highly stable -Gly-Pro-4(R)Hyperepeated host sequence, Ac-(Gly-Pro-4(R)Hyp)3-Gly-3(S)Hyp-4(R)Hyp-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms as stable a trimer (Tm=49.6 degrees C) as Ac-(Gly-Pro-4(R)Hyp)8-Gly-Gly-NH2 (Tm=48.9 degrees C). Given that Ac-(Gly-Pro-4(R)Hyp)3-Gly-4(R)Hyp-Pro-(Gly-Pro-4(R)Hyp)4-Gly-Gly-NH2 forms a triple helix nearly as stable as the above two peptides (Tm=45.0 degrees C) and the knowledge that Ac-(Gly-4(R)Hyp-Pro)10-NH2 does not form a triple helix, we conclude that the host environment dominates the structure of host-guest peptides and that these peptides are not necessarily accurate predictors of triple helical stability.
منابع مشابه
Effect of 3-hydroxyproline residues on collagen stability.
Collagen is an integral part of many types of connective tissue in animals, especially skin, bones, cartilage, and basement membranes. A fibrous protein, collagen has a triple-helical structure, which is comprised of strands with a repeating Xaa-Yaa-Gly sequence. l-Proline (Pro) and 4(R)-hydroxy-l-proline (4-Hyp) residues occur most often in the Xaa and Yaa positions. The 4-Hyp residue is known...
متن کاملPositional preferences of ionizable residues in Gly-X-Y triplets of the collagen triple-helix.
Collagens contain a high amount of charged residues involved in triple-helix stability, fibril formation, and ligand binding. The contribution of charged residues to stability was analyzed utilizing a host-guest peptide system with a single Gly-X-Y triplet embedded within Ac(Gly-Pro-Hyp)3-Gly-X-Y-(Gly-Pro-Hyp)4-Gly-Gly-NH2. The ionizable residues Arg, Lys, Glu, and Asp were incorporated into th...
متن کاملSequence dependence of the folding of collagen-like peptides. Single amino acids affect the rate of triple-helix nucleation.
The refolding of thermally denatured model collagen-like peptides was studied for a set of 21 guest triplets embedded in a common host framework: acetyl-(Gly-Pro-Hyp)3-Gly-Xaa-Yaa-(Gly-Pro-Hyp)4-Gly-Gly-amide. The results show a strong dependence of the folding rate on the identity of the guest Gly-Xaa-Yaa triplet, with the half-times for refolding varying from 6 to 110 min (concentration = 1 m...
متن کاملThe crystal structure of the collagen-like polypeptide (glycyl-4(R)-hydroxyprolyl-4(R)-hydroxyprolyl)9 at 1.55 A resolution shows up-puckering of the proline ring in the Xaa position.
The collagen triple helix is characterized by the repeating sequence motif Gly-Xaa-Yaa, where Xaa and Yaa are typically proline and (2S,4R)-4-hydroxyproline (4(R)Hyp), respectively. Previous analyses have revealed that H-(Pro-4(R)Hyp-Gly)(10)-OH forms a stable triple helix, whereas H-(4(R)Hyp-Pro-Gly)(10)-OH does not. Several theories have been put forth to explain the importance of proline puc...
متن کاملDestabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine.
Mutations resulting in replacement of one obligate Gly residue within the repeating (Gly-Xaa-Yaa)(n) triplet pattern of the collagen type I triple helix are the major cause of osteogenesis imperfecta (OI). Phenotypes of OI involve fragile bones and range from mild to perinatal lethal. In this study, host-guest triple-helical peptides of the form acetyl-(Gly-Pro-Hyp)(3)-Zaa-Pro-Hyp-(Gly-Pro-Hyp)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 1 شماره
صفحات -
تاریخ انتشار 2004